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lﬂ 1. Introduction

!

In the neurophysiological literature, it has been well recognized that
. a neuron cell is spatially extended and hence that a realistic description

of neuronal activity would have to take into account synaptic inputs that

occur randomly in time and at different locations on the neuron's surfacce

%W [( 17 )]. In this paper, we shall develop a stochastic model to describe
o,
x the evolution of the membrane potential along the surface membrane of a nerve

cell. We will regard this potential as a stochastic process or random field,
indexed both by time t>0 and by location xeX where X will represent the sur-

face membrane of a neuron. Our work is based on and extends the work of

several authors, including Wan and Tuckwell, Riccardi and Sacerdote, J. Walsh,

p and G. Kallianpur [ 21, 18, 20, 14]. In all of these earlier works the
l; ’ ncuronal membrane X was represented by a single point [ 18 and 14 ]

v . or by an interval [0,b] of the real line. The latter model - the only spatial
oy \ model treated stochastically so far as we know - has been considered by Wan and
~

;g Tuckwell and analyzed probabilistically by Walsh. The deterministic back-

3

A ground for their work is core-conductor theory and the one-dimensional cable
éﬁ cquation which is adequate for situations which involve "longitudinal dis-
;2 tances that are many times the cylinder diameter". Other choices of X arc

more realistic if one is concerned with locations “close to point sources

&3 of current and in problems where the distribution of potential in a large

S% extracellular volume is of primary importance"., [ 18, p. 42, also p.56}.
:: In the present work, the form of X will be quite general; for example,
‘fz it can be any smooth, compact, d-dimensional manifold. The case d=0 or 1

;3 includes the work of the previous authors; d=2 models the surface of a ncuron
i: ) (useful also in the study of impulses originating at or near the soma) and

5 d=3 is suitable for modelling the interior of organs such as the heart.
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1.2

Before discussing the models and results it might be of interest to give
a brief, though simplistic, description of the physiology of neuronal acti-
vity (see [17]).

A neuron is a cell whose principal function is to transmit information
along its considerable length, which often exceeds one meter. '"Information"
is represented by changing amplitudes of electrical voltage potentials across
the cell wall. A quiescent neuron will exhibit a resting potential of about
60 mV, the inside more negative than the outside, for reasons described below.
Under certain circumstances the potential voltage in the dendritic tree will
rise above a threshold point at which positive feedback causes a pulse of
up to 100 mV to appear at the base of the dendritic tree; this pulse is trans-
mitted rapidly along the body and down the axon of the cell until it rcaches
the so-called "pre-synaptic terminals" at the other énd of the neuron. lerc
the pulse causes tiny vesicles filled with chemicals called "neurotransmitters"
to empty out into the narrow gaps between the presynaptic terminals and the
dendrites of other neurons. When these chemicals diffuse across the gap
and hit the neighboring neurons' dendrites, they may cause the potential
voltage in these dendrites to rise above a threshold point and initiate another
pulse.

The molecules which make up neuronal cell walls (and all other living
membranes) are shaped a little like lollypops with two sticks. The candy end
is a phosphoric acid whose electrical charge is unequally distributed, or
"polar". This allows it to mix with water molecules (which are also polar)
and with ions such as sodium, potassium, and chloride. The two lollypop
"sticks" are long fatty acid chains which are not polar; they dissolve

readily in oil or fats, but not in water. These cells tend to arrange them-

selves so that their fatty tails meet only other fatty substances and only

R o)
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their polar ends directly meet water molecules and dissolved ions; one quite

s{able such formation is a two-molecule-thick membrane, with all the fatty
téils in the middle. This two-layer thick membrane of molecules which are
half phosphoric acid and half fatty lipid are called "phospholipid bilayers".

These bilayers make extraordinary insulators and, since they are so thin,
extraordinary capacitors. If for some reason a charge imbalance should arise
so that one side of the membrane is more positive and the other side more
negative, the insulating property of the layer would tend to maintain that
imbalance and the resulting voltage'potential.

In fact nearly all living membranes exhibit such a charge imbalance and
resulting voltage potential, due to their selective permeability to the pas-
sage of various ions. Large protein molecules stick through the lipid bilayer;
when several of these come together they can form a passage through the layer
like the staves of a barrel and let one or another species of ion pass through
the membrane. Different proteins have the ability to pass different species
of ion selectively - say, allowing potassium to pass but not sodium - and
this gives rise to the electrical potential. In the cell at rest potassium
is about 30 times more plentiful inside the cells than outside, while sodium
is about 10 times more plentiful outside than in. This imbalance is maintained
by the ATP sodium-potassium pump, which acts like a revolving door. 1t active-
ly trades Na and K to keep the potassium in and sodium out. Since the membranc
is more permeable to potassium than to sodium, the positively charged potassium
leaks out of the cell down its concentration gradient into the surrounding fluid,
while sodium is unable to leak into the cell; the result is a net negative
charge inside the cell of about 60 mV, The voltage potential itself prcvents

more potassium from leaking out since potassium ions are attracted by the rel-

atively negative charge inside the cell.

s
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1.4

Returning to the description of our model, let (t,x) represent the dif-
ference between the voltage potential at time t at the location xeX and the
resting potential of about -60 mV. As time passes, £ evolves due to two scp-

arate causes:

(i) Diffusion and leaks: Depending on the nature of X, the electrical
properties of the cell wall may be approximated by postulating a contraction
semigroup {T.} on LZ(X,F) where I' is a suitable o-finite measure on X. For
example, if X = [0,b], core conductor theory suggests the semigroup correspond-

ing to the diffusion equation
13
a—t'=-85t+ GAt:t (B,8§ 2 0)

with Neumann (or insulating) boundary conditions at both ends. In neural
material like heart muscle in which electrical signals can travel more easily
in some directions than in others, the Laplacian should be replaced by a morc

general second-order elliptic operator.

(ii) Random fluctuations: Every now and then a burst of neurotransmitter
will hit some place or another on the membrane and suddenly the membrane poten-
tial will jump up or down by a random amount at a random time and location.

It is believed that these random jumps are quite small and quite frequent,
making it reasonablé to hope that they can be modelled by a Gaussian noisc
process; in any case the arrivals at distant locations or in disjoint time

intervals are believed to be approximately independent, justifying their

modelling as a mixture of Poisson processes or as a generalized Poisson process.

Our principal concern is to prove the existence and uniqueness of solu-
tions to stochastic differential equations (s.d.e.'s) that describe the cvolu-

tion of the voltage potential £ - a special example of such an equation is
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fkgf . (1.1) dEt = (-BEt‘+ GAEt)dt + dxt ;
b | :
j; ~ (B,820) in which the "noise'" or driving term, is a generalized Poisson process .
R A -

on R, x X or possibly a Gaussian process on R x X - and to prove that under d
9
?ﬁé comparatively mild conditions a sequence of solutions to this equation with
> :
il Poisson driving terms will converge in distribution (in the sense of weak con- -
vergence of the induced probability measures) to the solution with a Gaussian
'i;j :L
&2 driving term. X
WA s
3’ These results are established in Sections 2 and 3 of this paper. In our
™ 1
. formulation of the problem, the voltage potential £ is viewed as a stochastic
-4 )
af process taking values in ¢', the dual of a suitably chosen countably Hilbertian
52? nuclear space. (Thus the stochastic differential equations we consider govern -
»; .
. ) nuclear space valued processes.) It turns out that almost all the paths of
3 : N
35 s s
% the voltage potential process § 1lie in the Skorokhod space DR .: H ) where .
i ' «
f: H_ is a suitable Hilbert space. .
o The work of Wan and Tuckwell as well as its rigorous treatment in a more .
N } .
iﬁ general set-up by Walsh is discussed in some detail as Example 2 of Section 4. -
23 :
M
fﬁ It is perhaps appropriate here to remark briefly on the relationship of .
a—
Walsh's work to ours. As in Wan and Tuckwell, Walsh takes X to be an inter-
x, val [0,b] and considers the potential as a stochastic process of the two para- )y
:QS meters t, the time and x, the location. The techniques of 2-parameter martin- E
M}{ gale theory are used. The approach adopted in our paper leading to stochastic )

differential equations in infinite dimensional spaces (specifically Hilbert

spaces or nuclear spaces) has the advantage that the theory can also be applied

- to more general cases in which multiparameter martingale methods are either .

B, z cumbersome (e.g. if X g;Rd, d>2) or inapplicable (e.g. if X is a sphere or




1.6

a more general compact smooth manifold with or without a boundary). Ex-
ample 3 of Section 4 and Section 5 are devoted to these applications.

Though our methods (in contrast to those of Walsh) do not permit us to
study the behavior pf the membrane potential process at individual points
(t,x) we are able to prove stronger approximation results (see Section 4).

Stochastic differential equations in infinite dimensional spaces have
been intensively studied in recent years in the context of many physical
applications. They occur in the work of Dawson, Miyahara, Holley and Stroock
[ 9, 16and 10]. In the last named work, which is a study of infinite parti-
cle systems in statistical mechanics the authors are led to an s.d.e. driven

~

by S'aRd)-valued Brownian notion. Similar equations were discussed by Ito

in his Evanston lecture some years ago [12].

The models discussed in the present paper do not investigate the pheno-
menon of excitability, or high-speed passage of voltage pulses called "action
potentials". Our models, however, are useful in describing the sub-threshold
behavior of a membrane potential. Of particular interest is the probability
distribution of the length of time until the base of the dendritic tree reaches
. a critical value 0, at which time, an action potential is generated. Informa-
tion on this is given by our weak convergence result:.(Theorem 3.2) which im-
plies that the first passage times for the Poisson-driven process converge
in distribution to the first passage times for a generalized Ornstein-Uhlen-
beck process.

In Section 6 we mention more realistic models of neuronal activity which
introduce nonlinear semigroups and s.d.e.'s of ¢'-valued processes with cor-
responding weak convergence theorems. These questions as well as the problem

of estimation of parameters of interest will be considered in a later paper.
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2. Mathematical Formulation

Let {Tt}tzo be a self-adjoint contraction semigroup on the Hilbert space
. H = LZ(X,B,F) for some o-finite positive measure space (X,B,T). X is intended

to represent a mass of excitable tissue (perhaps the cell membrane of a neuron),

{Tt} the evolution semigroup describing the decay of the difference Et between

the actual voltage potential Vt at the time t20 and the resting potential V_ on

R
_3 X. The measure T has no physical significance; it is chosen for convenience in

order to make'{Tt} self-adjoint and to satisfy several assumptions below.

{ We shall require that the resolvent Ra = f: e-mt Tt dt be compact (for each
Al
L
3 a>0), and even that it satisfy the assumption
v
K T
Al: For some r1>0 the operator (Ra) 1 is Hilbert-Schmidt.
,&
o .
:ﬂ . By the Hille-Yosida theorem {Tt} has a negative-definite infinitesimal generator
v‘:'.‘\
e -I.. Since Ra = (q+L)'l, the assumption implies that H is separable and that L
. .

) admits a complete orthonormal set {¢j} of eigenvectors inHwith eigenvalues Osxlsxzs .
L ‘

M

\i satisfying

o~ -2r,

i X(a+xj) < ™
-i These properties hold for any a>0 if and only if they hold for all a>0: we shall
)
fs takce n=1 and set

: -2r1
A (2.1) o, = 2(1+Aj)
2
A
%)
a% Denote by <e,+> the inner product on H and let
‘ 2
® = {¢peH: Z<¢,¢j > (1+)«j)2r < » for all re¢e R}. For each real number r
:é define a quadratic form <-,*> and norm l'”r on ¢ by
4 .
) 2.2 = 2r

5 (2.2) <O 0>, = T<0,6> <0, (144))

N ‘
N - L

\ Holl. = (<0,0>)
het
vy
’I
A

4-‘..'..'-."1‘. T e
b Py Ny e =)

SRS PR VR




and let Hr be the Hilbert-space completion of ¢ in the inner product < -, - >
Give ¢ the Fréchet topology determined by the family {||'||r} of norms and let
$' be UHr with the inductive limit topology.

The following are straightforward consequences of Al and the definitions

above:
X5 i) ¢ is contained in the domain of L" for every integer n.

ii) L and 'l‘t map ¢ into itself.

iii) Finite linear combinations of {¢j} are dense in ¢ and in every Hr:

{¢j} are orthogonal in each H_.

iv) Hy = H. :
* v) &' > H, > H > ® if - < r <s <» the injection of H, into H. is ¢
A .
3% Hilbert-Schmidt if s > r + r.. :

vi) H-r and Hr are in duality under the pairing El¢] =E<€,¢j>_r< ¢’¢i>r for .

EeH o e Hr' The pairing is symmetric and independent of 1, and EToY =<t ,¢>

for £, ¢ H.

vii) &' may be identified with the dual space (in the weak topology) to ¢,

-tA, . .

" The proof of i), for example, proceeds by showing that the sum I < $,dy> e J ¢j .
3‘“” converges in ¢ for each t>0 and each ¢eH to Tt¢ and that t-l(d)—Ttdb) = -
oy -t), S
an I<o.d, >t 1(1-e 130, is Cauchy in H = Hy as t50, with linit Lo = E<4,6.> ) 0. '
. ! >

Statements ii)- vi)are easy, and vi) is a consequence of the nuclear theorem (sec
GV, Ch 1 Thm 3).

Let y be a o-finite measure on Rx X satisfying the assumption

A2:

The bilinear form

% 008, = [ a%6(x)¥(x)u(dadx)

on & x & is continuous

ko'.)

: and let me $'. By the nuclear theorem there exist numbers T, € R and .

g \, Y
LY. 0, R, such that -
s -
N 02 L o 2 _

X (2.3) {mi 011° + Q(4,4) < 6,]|0ll for all ¢¢ ¢ .

g 2770

E“ A11 processes and random variables are assumed to be defined on a fixed, but =

arbitrary complete probability space (Q,F,PP). Let Nbe a
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v RxXx(0,t]

—— 2-3

“~ S
Ry 3
‘__:“‘ .

,.:: regular Poisson measure on Rx X x R, with mean/covariance measure u(dadx)dt

2

i and define a ®'-valued stochastic process X with stationary independent incre- )
A ments by %
o (2.4) X,[¢]=tm o] + / a¢(x)"N(dadxds) -u(dadx)ds? .

!

N | O

o . The interpretation is that N(AxBx(0,t]) should be the number of voltage pulses
-:: of sizes ae Ac R arriving at sites xe Bc X at times s<t; the probability that
2.3 exactly k such pulses arrive during the indicated period is e'>‘ Xk/k! with

;, A =tu(AxB). A computation will verify that

o .

;J (2.5) log E elx"w] =itm(¢] +tf (13 _1_iag(x))u(dadx)

N

-’": for all teR,, $e .

iy

?& - Now let Vt = VR + Et € &' be the voltage potential on X at time t20,

:'::.: VRe ' the resting potential, and Et =V, -VR their difference: we will model
5 ) £, as the ¢'-valued solution with initial value EO =V = Vg to the stochastic
.::j::f differential equation

32?- (2.6) de, = -L'E.dt + dX_ .

;Ej Here and below L' and T{ denote the adjoints of L and Tt when regarded as

,“: operators on . In Theorem 2.1 below we construct a solution to (2.6) by

=y evaluating the stochastic integral

L t

i.. (2.7) £, = TiE, + ({T,‘c_s ax, .
Before doing so, we pause to introduce three examples; they will be developed in
_ more detail in section 4 below.

,? Examples:

-:'::: . 1. X has a single point.
.- In this case H = Rand Tt is multiplication by e‘tL for a constant L>0.

Obviously Al is satisfied for any T, > -

’-‘ AR
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2. X is an interval, L=-A + B (with Neumann boundary conditionms).

Here we may take Lebesgue measure for T and verify Al for all r

1> ]/4. ’1

3. X is the unit sphere in R3 , L=-A (Laplace-Beltrami).
If we take T to be surface measure then Al is satisfied for all r. > ',

17 T
since then
..Zrl o -21‘1
B = Z(1+1.) =} (28+1) (1+£(£+1)) <, E
]
£=0
In all three examples, condition A2 is satisfied for any measure u of the

form

(2.8) u(AxB) =k§ lA(aZ)vt(B)-+£§ lA(-af)vf(B)
=1 =1

in which {az} c (0,») are the possible sizes of "excitatory'" (i.e. positive)
pulses, {-af} the sizes of "inhibitory" (i.e. negative) pulses, and {vt,vf} are
finite measures on X giving the local arrival rates. The proof hinges on thce
fact that in each case the orthonormal set {¢j} satisfies a bound of the form
l¢j(x)| Sc(1+)\j)r uniformly in xe X and j <; we may take r =0 in examples 1
and 2, and r =% in example 3.

Example 1 (with vt and vf point masses of size fz and ff, respectively on
the one-point space X) appeared in [TC] and [GK] and, with slightly different
notation, in FRS]. Example 2 (with X = [0,b] aﬁd U satisfying
fmxxézu(dadx)<°° appears in [JW], as a generalization of the example in IWT1,
In the latter example 1 was of form 2.8 with each vz and vf a point mass at
the point X Example 3 was suggested to us as a model for excitation at the
soma of a neuron.* The basis for this example is the fact that synaptic inputs
may occur also in the somatic region coupled with the usual assumption about the

approximate spherical shape of the soma. We know of no examples other than

these three which have been studied to date. We will motivate and introducc

*by Dr. T. McKenna (personal communication)
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3' classes of new cxamples in Scction 5.
Consider now the problem of performing the stochastic integration indicated
" in (2.7) for a specified random element £, of o'.
R Since any element ¢ ¢ & may be expanded into a series of the form ¢ =7 < ¢'¢i> ¢i
‘\“ ’ ’
, which converges in each Hr (and therefore in ¢), we may hope to write Etrdﬂ =
R -1 . .
: . J . b oy .
L< ¢.¢j >&, with & Et._cbj] given by
. j -txj t -(t-s)kj
", . = . fé. .
2 (2.9) £ =e Efo;1+ £ e dX "]
In order to carry out this program, introduce the notation
fa ;
) = £ Td.
e £ = Ees1,
X
-~ m = mlo.] ,
. J
e i
2 (2.10) )(t Xt.¢j] ,
2 I B
. Yt = Xt -tm” ,
- ; t s)\j j
b2 and Moo= Je Jarg .
__.: 0
’!:q . .
Notc that Y'I is a square-integrable martingale with covariance function IEYiY: =
. s, )
min(s,t)Q(cbi,d)j) (because X  has independent increments) and e 3 is trivially
:" predictable, so the martingale integral in (2.10) is well-defined and Mz is also
J‘_: . . .
a square-integrable martingale. We can and do take versions of Mz and Y’I {and
‘ therefore of Xz) with sample paths in the Skorokhod space D(R+: R) of right-con-
.:.:
R tinuous R- valued functions on R_ with left-hand limits at every point of (0,®).
."
a Lemma 2.1
‘.\' v ‘tA. . 2 2
' For each T >0 and q2r, +r,, E 2 sup (e JMJ) (1+)2.)" < 1679,0..
94 1 2 . t j 172
Xy j<o 0<t<T
'~j . In particular, the sum converges almost surely.
- Proof:
X ~tA, . t -(t-s)A.
e I - f e J dYJ
o t 5 s

. - . '4“‘. . . -..
AN S LA SN
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v so we have the bound

O -t . . t -(t-s)A,
i le Jle < ( sup |Y§|)(1+] e J ds)
! 0<sst 0o’

A5H _ < 2 sup lY:l
) 0<sst

Doobh's inequality applied to Yj yields

“tAs s, .
~ Esup (e JMi) < 4 E sup lvi

I 2
e} t<T | t<T

2
[ 729

ji 2
16 E (Y))

[

ON =16 T f a2¢§(x)u(dadx)

o 16 T 6,(1+) )2]r2
2 j

Z
"

It follows by the monotone convergence theorem that
tA

3 EY sup (e

( 2 e
) | j tsT )

'.:.::.:‘ . Z(rz'Q)
-~ < 16T622(1+>‘j)

< 1679192 .
o and hence the series converges almost surely. [

Now set
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Theorem 2.1

'O
[

\

For each random element EO of ¢' satisfying

N
»

A3: E ||50||§3 =0, <

oy Y &
LAY,
E]

for some r, € R, the series

0st<T j>n

; 3
te2
2 N
¢ (2.12) &, = LEJ0,
2 converges uniformly in 0<ts<T in the H q topology for each T>0 and quax(rl + r,,-rs)
- N “
‘ to a process & whose sample paths lie in the Skorokhod space D(R*: H_q) of right-
’\'. continuous H_q-valued functions on R+ with left limits at each point of (0,%),
N The process satisfies
K o) 2
e E su < C
sup e, Q%%
‘ and (3 fortiori)
) Elg, 01 < clloll}  cosesm)
& vl S Gliely R
~‘
}.: for some C. <.
]
Proof: For each T>0 and n<n'e N the triangle inequality yields
:‘\ ' ; n' -tk .
o sup || ) ¢.€t|| < sup ||[J e J 5%¢.{L‘ - (Initial term)
~ 0<t<T n<jsn' 7 © 9 0stsT n+1 J
n' -ti, .
e + sup || Y e J M%¢ ”q (Martineale term)
KN 0<t<T n+l j
i
:,:.; n' . Ny
+ sup || ¥ mid’.ll‘ (Mean term) o
0<t<T n+l J .
o :‘:1
<. v We bound the three terms separately: ]
-’_: ::T
o -t -
""0 s . » 2 j j 2 "2 2
o Initial term)” < su e Jeh‘a+ay™ o
= ( p I FRCRN o
e
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2.8

>

» + 0 a.s. (as ) since E HEOIﬁ
2 52 -2

(Martingale term) S sup } (e I M) (1 +2)

2 0st<T j>n J

1

b + 0 a.s, as n+o by Lemma 2.1,

(Mean tem)z < sup X (f e J des) (1+2, )

0st<T j>n

s 12 ) (n[OJ]) (1-»x )2

j>n

+ 0 as n+ since ||m ]| 2 o llm“z €6, <,
-q -T,

AR ALLLN

2
Thus the partial sums yJSn ¢. converge uniformly on 0,T] in the H q topology.
3 -
N Since each partial sum lies in D=D(R_: H_q) this implies that the partial
a
-. sums form a Cauchy sequence in the complete metric space D; let £ denote their
limit.
\
;_: The estimates above and the Cauchy-Schwartz inequality together yield
r E sup ||£ ||2 < 3E T (Initial tem) + (Martingale term) + (Mean tcrm) 1
0<tsT
v )
: S 3[93 + 16'1‘9162 +T 62]
f = CT' M
; Theorem 2.2
") For each 0srst< the process £, constructed in Theorem 2.1 satisfies the
“ equation
A = ! t 3
; Se =T Bt [ anThos 9%+ el
- satisfies for each ¢ <« & the equation
)
rgl =
2 (2.13) E,01 = EFT, 03[ L dX T, (81 .
~
>
v}
*
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Proof:

For any quax(rl +r,, -r3) the following series converge for all ¢- “q by

Theorem 2.1:

; -tkj skj 5 -th 5ot -(t-s)kj
£,T61 = L 0o, 1 (5 e *f(o,t] e Javie Jan'f e ds) ,
-(t-r))\j 3 -rlj sAj j —rlj jer -(r—s)Xj
Erth_r¢]=Z ¢l'¢j] e (go e +f(0’r]e dy e +m fn e
;o Ay gty -(Ees)
=z WMol (g e +j'(o’r]e dve +m [ e ds) ,
hence
-(t-9)1y -(t-5)A
E,JO1-E 1T, _¢1=1 ¢[d,] (j(r,t] e dy, +j(r’t] e m’ds)
fo.1 -(t-s))\j 3
= L 9¢, f( e1® dx_
I(r’t] dxsth_s¢1 . n

Corollary 2.1

Let Ft = O{EO,XS: 0ss<t} be the smallest 0-algebra over which Qofcbl and

xs[dﬂ are measurable for all s<t and ¢ ¢ . Then for r<t,

ETE T0)F 1=£ 1T 63+ f:, mrT,_ 61ds .

Corollary 2.2

&t has the (strict) Markov property, i.e. F-'r is conditionally independent

of 6{£sf¢1: s2r, ¢ed} given 0{€r(¢): dedl}.

Proof:

Let wk ed and t. 2r for 1<k<K. Using the independent increments property

k
of X,, it is possible to compute explicitly

iZg ka1
K | F_1 Y (E.fT wnjt" rr ¢ 1 ds)
logEle =i . m 1ds
T k<K T tk-r k tk—s

o [ (058 1 iar(x,s)u(dadx)ds

ds)

[
f

) e B %
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2.10

where F(x,s) = 2 l(r t ](S)Tt _swk(x); since this is not only F-measurable but
kskK Tk k
U{Er[¢1: ¢ € d}-measurable, we are done. 1

In the remainder of this section we state and prove results similar to
Theorems 2.1 and 2.2 for stochastic differential equations of the form

dCt = -L'Ctdt + th

in which the ¢'-valued stochastic driving process Wt is Gaussian. The proofs
are similar to (and a bit simpler than) those for the generalized Poisson pro-
cess xt already considered, so they will only be skeletal.

Several authors have considered infinite-dimensioﬁal Wiener processes and
Ornstein-Uhlenbeck processes such as "t and Ct in case $=8. For examplc, Tt3
has an excellent account in his 1981 Evanston lecture, M12]. Miyahara considers
similar processes in connection with a vibrating string problem M161; Holley
and Stroock, in their treatment of a problem involving infinite particle systems
also introduce these processes [10]. However, since no discussion in the litera-
ture seems to include all of the estimates we will need in Section 3, we prefer
to derive them here.

Now let Q denote a continuous positive-definite bilinear form on & x &, lect
me &', and let W_be a path-continuous ¢'-valued independent-increment stochas-
tic process with characteristic functional

pot ? . (itnl61-4£Q00,0) |

1t0 712) calls such a process a "Wiener S'-process" when $=S. The Minlos and
nuclear theorems allow us to construct such a process with continuous samplc-

paths lying in H-q for any q2r +r, if m and Q satisfy

1

A2 Imo11? « o0 s llolly  foratioce .

For random CO € H_q set




-(t-s)A. .
J mlds s

j % UL I
and % *© M twm
Theorem 2.3

For each random element Co of ¢' satisfying

A3': E HCOH i:’, =08, < =  for some r e R,

the series
(2.15) g = zcjcb-

t t)
converges uniformly in 0st<T in the H-q topology for each T>0 and qzmax(r1+r2,-r3)
to a process L whose sample paths lie in the space C(R+ : H_q) of continuous
ll_q-valued functions on R _. The process satisfies

E sup ”Ct”f sC

0<tsT q T

and (; fortiori)

2 2
E |ctr.¢]| < c,r||<p||q (0st<T)

_ 2
CT = 3|'63 + 16T9162 +T 92] < ®
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. Proof:
N .
‘ In this Gaussian case each Zz is an ordinary Wiener process, with diffusion
:j rate l::(z{)2 = Q(¢j,¢j); it follows that Zé, H{, and M'z may all be taken to have
.1 .
R continuous sample paths. This forces the partial sums | C:tbj to have continu-
) jsn

ous sample paths. The proof that the sequence of partial sums converges uni-
f“ formly on each [0,T] proceeds just as in Theorem 2.1, using exactly the same
:3 estimates and leading to the same bound CT N
B

Theorem 2.4
E‘I For each Osrst<e the process ct constructed in Theorem 2.3 satisfics the
A _
b equation ;t = T{-rcr + !(r,t]T{.-s dws, i.e. satisfies for each ¢ ¢ & the equa-

tion
o)
N r s ta L
X (2.16) (61 = LIT, 61+ [ oW [T o
4 Corollary 2.3
=%
» Let ':t = o{r,o,us: sst}; then for 0srst<e ,

t
Efc M6)FI =z [T 61+ [ wfT, 0] ds .

N Corollary 2.4
D Ly has the strict Markov property.
\ Proof: -'Ij::
Y ] R
LY “'.\
. The theorem and its corollaries are proved in exactly the same manner as ;
;
- Theorem 2.2 and its corollaries. n Ea
¥ - o
o Remark 2.1 ®
~ - .
] 143 %o is jointly Gaussian with {W_ } then L will be a Gaussian H q-valued ‘i
9 - .
N process which is in many ways an infinite-dimensional Ornstein-Uhlenbeck (hence- ’1,
5 forth: 0-U) process. If m=0 and Co is independent of W then for each j ' -]
0% 1
::0 "’LA}

A Lo et Sty e ..
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is the usual 0-U process satisfying the stochastic differential equation
I | 3
(2.17) dz;t Ajct dt + dwt

with initial value .
For >‘j >0 the process Ci will be stationary if C% is independent of WZ
and has a normal distribution with mean 0, variance Q(¢J. ,¢J.)/2)\J.; if )‘j =() then

t;: =2;3+Wi is a Wiener process starting at ;3 .

Remark 2.2

The processes {CJ:} will be independent if the {i;lj)} are independent and in-
dependent of {Wt"¢]: t20, ¢e®} and if {¢J.} diagonalizes Q, i.e. if Q(¢, ,¢j) =
for i #j; independence may fail in other cases. Similarly, the processes {{J;}
constructed in Theorem 2.1 will be orthogonal if Q(d>i ,d)J.) = faz¢i(x)¢j (x)u(dadx) =0
for i#j (as will happen when I'(dx) = Iazu(dadx), for example) and if

l’.f,ofcb IYtFw] =0 for all t20 and ¢,pe &.

Remark 2.3
The mean functional m in the definition of Et (similarly ct) plays an inessen-

tial role; in most cases it can be absorbed into EO and VR as follows.

Assumption Al implies that L has a finite-dimensional null-space spanned by

{¢1,..., ¢n} for some n20; let

m = ) mld,l,
0 an J ]
be the projection of m onto that null space,and set mp = 7 (mj/XJ.)gﬁj. The series
j>n

converges in H1 r and satisfies

1

m=m0+LmR.

We can now write mg (see (2.11) and (2.14)) in the form




ft
g
[N
Sy
t
[
()
.
7]

mt if jsn
. -th,
n? (1-¢ J)/AJ. if j>n

-tA,
- J
mol'¢j]t + me.d)j] A-e )

i = 3 v I3 V = i i -
and rewrite Vt VR+ > 38 VR+1:m0 + Et where VR VR+mR is the new resting poten
tial and zt = Et -mp - tm is the new deviation. The process gt with initial
value €0=V0 -Vp= 50

-m, satisfies the equation

0

R
& - t

(2.18) E.001 =& 1T 01+ [ A [T _ 61 .

This is just (2.7) with 50 replaced by go and Xt by the process Yt = Xt -tm
which satisfies an equation like (2.4), but with m=0,
The effect of m is to bring the resting potertial VR to a new equilibrium

VR’ Usually L has no zero eigenvalue, so ny does not appear.

Remark 2.4

Theorems 2.2 and 2.4 suggest that the equations

&

1]
—LEtdt + dXt
and

dz,

=L Ce dt «+ dl't

might have stationary solutions on -o<t<» satisfying (2.13) and (2.16) for
all -w<r<t<eo, When AJ. >0 for all j this is indeed the case. After setting
m=0 (see Remark 2.3) and defining xt=Yt or Wt =Zt for all te R, it is casy

to construct

£,(6) it dx [T, 61

or

_(t
Lo(0) =[O aW T, 6]

as in Theorems 2.1 and 2.3,

. . . . . - L. .".q_.-_-_<
PP S T I VI T WP U VR, v A Rp I




3. Weak Convergence of Solutions

Now let us fix a o-finite measure space (X,B,I'), a self-adjoint contraction —J

-2 . semigroup {Tt} on H= LZ(X,B,I‘), and an initial voltage distribution Eoe %' and ,jj:
‘% consider the effect of varying the distribution of the incident noise process ‘1

1. X,- This distribution is uniquely determined by the mean functional me ¢' and .
N the measure u which gives the expected frequency with which impulses of various .!
) 1
}\ magnitudes hit X at various points. .
L In Theorem 2.2 we have derived the stochastic differential equation satis-
:; fied by the "electrotonic potential" Et (= the difference between the voltage
) or membrane potential Vt and its resting value VR) . As was shown in Theorem
J 2.1, £, is a process whose sample paths lie in D(R, : H_q). To study the con-

. < . n sy s .
tinuous approximation of a sequence £, of such processes it is first necessary
to derive auxiliary results on the weak convergence of D(R+ : H_q) -valued pro-

cesses. We begin with

.53 Lemma 3.1

N - .

;j Let {Pa} be any family of Borel probability measures on D= D(R+: H) for

' some real separable Hilbert space H with norm ||+]|. Then {P®} is tight if and
: only if for each €>0 and T>0 there exist a finite-dimensional subspace FcH

and positive numbers b,§ such that each p* satisfies

- (3.1) i) P*heD: sup || (I—]'[F)htll > el<e ,

~ 0<t<T

e

7_5:3 ii) P*{heD: sup ||nF hefl > bl <e,

0Sts<T

:::3; iii) P*fhed:  sup |IMCh, -hp)l> €t <e

- 0sssé

\;-

A P'hen: sup  |[I (hp-h)I[> eb<e,

. T-65s<T

Ti and iv) P*heD: sup min(||T; (hy -h, )l IIHF(ht -h) ) >ebce .
1 2
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3.2

lst<t2<r

and t, -tl <§. In i) -iv), HF is the orthogonal projection in H with range F.

The supremum in iv) extends over all choices of (tl,t,tz) satisfying O<t

By Prohorov's theorem it suffices to prove that a set Kc D has compact clo-
surc if for each €>0 and T >0 there exist b>0, §>0, and FcH as above such
that every he¢ K satisfies

i) sup |} (I-HF)htll <e,
0<t<T

ii) sup ||M_h ||l b ,
ostsT T °

iii) sup [|M.(h_-h)|l<se, sup |[I (hp-h)}l<e
osss§ F s 0 TésssT P S

iv) sup min{lIIIF (h, -htl) I, HIIF (ht2 -h) < e .

The space D with its Skorokhod topology is a complete metric space under the

metric

d(h,k) = sup e 'min(1, inf max(l|Alll,, sup IIh -k, D)1
0<T<> el ost<T ¢

where A is the space of strictly increasing maps from R+ to IR+ and, for T> 0,

and Ae A, JIAlll. = sup |logl(At-2As)/(t-s)]|. The proof is similar to that
‘ T 0<s<ts<T

of Theorem 14.2 of Billingsley (6] . The useful property of this particular

metric is that for every T>0 it satisfies

(3.2a) d(h,k) < max(e T, d(1po phs 1rg 79K))
and
(3.2b) d(h,k) smax(e™T, sup lIn, - kI .

0<t<T
For each ne N let pn’bn’ and 6n be the subspace and positive numbers pro-
mised in (3.1) for e=e ™ and T =n; without loss of generality we may take

roc le, bnSbml’ and anén«vl for each n. This insures that

||nF i anF hi| for n<m




........

>
.:5.‘ for each heH.

AR

Let {hn} <K be any sequence and define n). =i. By Theorem 15.2 of "6

‘ ‘ there is a subsequence {nli} along which HFlhn converges in D([0,11: F) and hence
P along which HFIIFO,th is Cauchy in (D,d). For each j =22 there is a further sub-
-‘ | sequence nji along which HF.ll'O,j]hn is Cauchy; set k:ii =hn. . and consider the di-
-3 agonal subsequence {k;‘}. We claim {ki} is Cauchy in D. Y

‘5 sJ Fix any n>0 and take Ne N large enough that e_N< n/3. Let F=F_ and fix

S N

N* > N so that for all integers i,j 2 N*,

2 N N

o dMelp o wykys Telpg naky) ST/3

4

S5 From (3.2) it follows that

N N -N _

X (3.4) d(HFki’ IIij) <max(e , n/3) = n/3 .

','..' . Since every n., with i 2N is of the form an for some j 21i, (3.1)-(3.4) yield

- for each i,j > N*

2%

o akl, K9y <dd, mxhy « amxd, mxdy « amxd, K3y < n

l:{é it 7§ c i’ "Fi F'i* "Fj Fj* 757 ~

a Since each sequence {hn} < K has a Cauchy subsequence, K has compact closure. []
7{:: lLemma 3.2

3 E—

.-J':Z Let {P"} be a family of probability measures on D=D(R,:H) for some real
]

- separable Hilbert space H with nomm ||+||. A sufficient condition for {P®} to
, be tight is that for every T>0 and € >0 there exist a finite-dimensional sub-

::::'.j space FcH and positive numbers cl, Cys Cg such that for every OstIStst2 ST,

- cach P* satisfies

o i) [, sup Il (x-mon [12ar® < e,

.:,:. 0<s<T

ii) [ sup l[thsllzdp“ <cp,

. 0<s<T

-:.

> - 2

o iii) [l (M, ‘htl)” Scpty-tp,

)
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&, 3.4
N 2 2, o 2 -
- : . 4
X W) [yl (hy - DTG (e =R N7 aP% s ety - 2p)
\' d
{ o J
. Proof': ik
5 .9
e ™ '\. ‘1
™ Chebyshev's inequality yields 1)-iii) of Lemma 3.1 while the same argument s
- .
. Billingsley uses in the proof of his Theorem 15.6 6] gives iv). I'l -]
0]

i Lemma 3.3 '-j:
\ Let G1 and 62 be subsets of a topological vector-space with compact closures 'fij*
D i s e N

G, and G,. Then Gy = {g1 +8,% 8 €6y, i=1,2} has compact closure as well.
! Proof:
. The set 61 +'§2 = {gl +8y0 By eﬁi, i=1,2} is the continuous image (undcr ad-
£y
dition) of the compact set G, x G,cVxV, and so is compact. This closed sct

172 P

Dy contains G; and hence _,3, which must therefore be compact. I
N
N Corollary 3.1
| If the families {IPOX(;I} and {P OY&I} of Borel measures on V induced by .
’f random elements {Xa: aecAl} and {Ya :ae A} are both tight, then the family
:j {Po Z&l } induced by Z, = X, *+Y, is also tight (even if X and Y are not inde-
P pendent) .
2
» Proof:
{ oot
) Fix €> 0 and find compact sets Gi cV satisfying IP rxa € G] 121-¢/2,
R PrY ¢ (;21 21-¢/2 for all aeA; then P l'Za € G3] > 1 -¢€, where (as above)
2 [0}
Wi
N e . Coi=1,2}. i
; Gy (g, * g, giecl,ll,}
.J
N Theorem 3.1
; Let A be any index set and let {m® :aeA}lcd' be an equicontinuous family
" of linear functionals on ¢, {ua :aeAl a family of measures on Rx X such that
-

the bilinear forms Qa(¢,tp) =f azd)(x)lp(x)ua(dadx) are equicontinuous and, for

DM -
. e e

each ¢ € &, f a4¢4(x)ua(dadx) is bounded independently of a e A by some number

[y

64(d>) <o, Let EO be a random element of &' satisfying

-
+
.




. P Sl o A A ol et A el e gt g ¢ e S ST A M AL A Sah At i B i S AR S S T ) T R e St Y AR e 2
3¢ A S . )
.:‘
Za. 3.5
>
o Elg )2 <o
3
{
3 for some Ty > -, Then for all sufficiently large q ¢ R the family {P*: a e A}
~ -
: of Borel probability measures induced on D =D(R+ : H q) by the processes
3 -
SR {F.? :ae A} constructed in Theorem 2.1 is tight.
o Proof:
BV
x By the equicontinuity condition there exist numbers 6,> 0 and € R such
that
o 2 o 2
(3.5) Im*(9) | + Q" (4,0) s 8, {10l 7
- 2
o 2 _ .
N for all ¢e® and ae A. Let qzmax(r1 +T,, -r3) and set 63- E ||€0||_q <o, Tt
o follows that assumptions A2 and A3 are satisfied for each oe A, so Theorem 2.1
o)
'_’.'~ cstablishes the convergence of the sum
Z: o v 5,9, .7 g, 5,0
ho A* 2 d ’ ’
. e=lfe TEpre T MITem o,
X . in the D topology (and, in fact, uniformly in the H_q norm on (0<t<T for each
T>0). By Corollary 3.1 it suffices to show that the families’ {P(.:f a=1,2,%
W]
: induced by the sums
o -tA, .
e i=1: = ] J
o i=1: Ey(t) {Je & ¢
"% tA
- - =V.e M0
. i=2: MY Le MUT 0
e
ol .
;‘-:' = a = J’a
.,._.:-: i=3 m, ZJ my ¢J
..,,-;.
- arc cach tight.
Nt .
Dol i=1: Since 50 does not vary with o, the "family" {PT} consists of a single
-:\.1
,‘; inner-regular Borel measure on D, and hence is tight.
) ,‘.q
1. i=2: Fix €>0 and T>0. By Lemma 3.2 it is enough to find F and Cy2 €y Cq inde-
‘
'5-: pendent of a satisfying
N
9, i) E sup [[(1- TOM]|%2 <«
3 o2l T - T

L. . - . - . . . S
., - . ot . - MWL TP LNy § N — u e
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3.6
%
= v 2
WA ii) E sup ||1 <c
e osssT T oS4 1
2
iii) E ”IIF (Mf:‘2 -M:l) ”-qs c2|t:2 -tll
iv) Efn, o - )% (Im o -2 s e e, -t ]2
PO e g W e, =% lg = Ssltamf

" By Lemma 2.1 we can satisfy i) and ii) by setting c, =166162 and letting F bhe

N -2r

e L
the space spanned by {¢1,..., ¢J} for any J large enough that 16T0225>J(1 +)\J.) <,

Now fix any 0O<t Stst and compute

1

A, . -th, .
N o 232 =T (e 2T wiie 1T i 2
Fhty 45770 g t; ty 379
X ~(t,-8)A, SO ) VR

T asa f e 27 ey e gy ™
j<J J (0,¢,] (0,¢,7 s

b
I

2

ok T a+x) 2 £ (s)av)°%
b : jSJ J (0’00) ] s

-(t

-S)A, -(tl-s)A.
for the function fj (s)=e J ]

2
l(o,tzfs) -e 1(0,t11

(s)
- Note that

(3.6) |fJ(s)l < )\j |t2 - tlll(O,tl](s) + l(tl,tz](S)

SN Straightforward computations with the log characteristic functional

YT )

log Ee © = t[(e!®®™) _1 _iagx))u*(dadx)

‘._-'r". show that for f,g in LZ(R+) nL4(R+) and ¢,y in 9,

EJ £(t)dYgTo] 0

a

‘,
2"a’s

(3.7) E(f £(0)a2reD% = [ a%? (€2 (t)u’ (dadx)dt

A
L4, 40 .
sPe’ e

6,0 £(tyat

,.". > :!‘.

(3.8)  E(J £0aron i goarityd? = (f a'e* (0w’ cor’dadn [ oed (e

" ‘.. “l{'l .l 4, H d . v .-

REAS

....................

. N e e e Tt e e PO, .. P . - S, .
e e e COR Tt s tet . LU P . R 2 TN . . - -~ .

. o e T e ettt . DA A A A T A T T VY

W afiasaiurdar b SRR gy L ot a i ot (A DAL e i S R R A A

. '
.t et YLt
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3.7

+ 2(f a%0(v(x)u*(dadx)) 2 (fE(t)g(t)dt)?

+ ([ a%6? o (dadn [ £ (0)an) (f aiv? (0 (dadn) | g’ (trdr)
= [ a*o? (v 0 (dadn) [ F()gd(r)at

+ 2%, (f £()g(trar)?

+ 0,0 W, 0 ([ ffary(f glar)

< § 2% 0v? )1 (dadx) [ (£g) 2t

+ 3074, . W (f £ar)(f ghdt) .
For the particular case of ¢==¢j and f= fj we find (by (3.6) and (3.7))
| j,a2 _ o
E(f £0d%°% = o] £na
(o] 2 2
<Q (¢j,¢j)rt1Aj|t2-t1| + |t2-t1|]

2r
ZFTZ

2
< 8,(1 +xj) xj +1]|t2 -tll

so 1ii) is satisfied with

-2q+2r
¢,=8, ] (1+1)) 2rr222 413
jsJ J ]

2,2
< 6162(1 +T )\J) .

-(t-s))\i -(t

-s)A,
If we put ¢=¢i,w=¢j, fi(s)=e 1(0 1:](s)-e 1

1
l(O,tI](S)’ and

~(ty-s)A, -(t-s)A,
g;(s) =e J1(0,t2](s) -e J1(0,t](s), then by (3.6) and (3.8),

E|in, (M‘:-M‘:I)HZ LNCET 112

I 0o ™aan e feal i g ead?
i,jsJ J S

IA

: -2q -2q,(.4,2,2 22
i,JZSJ(uAi) (1+ A" fa o750 (f£7g]ar)

+

. -2q -2q,0 o 2 2
31,%5J(1 $A) T A TT0T(6,,6007 (8,0 (f1d0) ([Jrde)

.......




.
R 4

O,

a
4 'J‘.J st

A

a l-’
W,
LY

*
AR SRR
\d'_(?(

Al

A

i,j<J

+3 7 @aa) 9042)72%20 00 240 2022 et -t 0R 2 (1, - 1)
i,j<J 1 ] 2 i j i ) RN A 2
2
< cqglt, -ty
with
L 3.4 .2 4la} 3 2,22
cy=4%3( } 84(8:) T AT+ TATI(L +2 ) +3/416,6,(1+TA))

Y CRaier i 2 Pmaaien 4 CERaCE et s N ARl JRcacaalita gt S S
o @ et 2 S S AT Rl Vi Al A/ - MO LT T 4 RN .. - - .

27800700, 0008,4) %0006 23t ) (e - 1 (e, - 0

T T

jsJ

Thus i)-iv) are satisfied and {Pozl} is tight.

. . . a . . .
i=3: Since m: is nonrandom, each P3 is concentrated on a single point. Tt is

sufficient (by Lemma 3.1) to find, for each €¢>0 and T>0, a positive number §

such that

i)

ii)

iii)

iv)

By (3.5)

large enough

generated by

0sts<T

.........

sup || (1-1 )ma|L <€
0<tsT Frtiq

sup || ml|| < <
ostsT T t-4

sup ||I_ > -mI|| <e
0sss¢ ¢ s 074

sup  ||M_fmX-m'3)| <e
T-ggsst F T 5 '-a

. o o o a
sup mln(HHF [m, - mtllll_q, ”HF [mt2 - mt]ll )<e .

we have {n*} <H__ uniformly bounded by ||mu||f <0,; pick J¢ N
2

T, -2
z(rz‘Q) 2 2
that (1 +)\j) <€ /(GZT ) for j>J and let FCH_q be the space

{¢1,..., ¢J}' It follows that

2 -2d. o t -sh. 2
sup [(T- I ||° = sup § (1+r)"YUn’re.1f e T ds)
Fith-a o ocest jog I
-2r
s 12?1, § 1er)  Zmlre.n’
j>J ] )

.............
..............
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X )
%
\I
o
2 2 a2
.
- s (€779,) ™12
X
7 ‘ s €2
X verifying i). The same estimates show that
2 2.0
o sup |Im_ |2 s 12)ln%))_
0stsT q 9
<
. 2. Q N
2 < Pl
o~ e
N 2 -
N <T (‘,‘2
1 o
o -
i so ii) holds.
53
o~ For iii) and iv) it is sufficient to prove that IIFm: is a uniformly continu- q
'3 . ous function of t on each finite interval, i.e. to find 6 >0 so that "
-] :
p Qa o .
i : (3.9) lImg Tm, -msjll_qs €  if 0Sssts<T, |s-t]| <6.
" g
3‘,‘ Wc compute ) . \-
% Im ra - 2012 = T (1 er) e, U e I aw? N
] s = <J a
2 j RN
% s |t -s)%]a® || -
-l 2 =
\3" Sezlt-SI :
) |
-> R !! 4
s0 (3.9) holds for all T>0 with 6=€/(62) . 0 by
::f: It follows from Theorem 3.1 that {P®} has at least one cluster point, and
- that any cluster point is a Borel probability measure on D. We now turn to a
> situation in which there is a unique cluster point to which every sequence in .
’ ’ {r"} must converge.
S, . Proposition 3,1 S
N 'y
. Let Y and Z be independent-increment &'-valued processes with log charac-
-.'
3 teristic functionsls :
i
\s z
N :

"\'-:.;::‘..;': i .‘T.‘V‘.f:\'v.-._'»,'. e e e T e S ST -: .:-
_'.‘ o) \-,‘- S - :. 1.‘(, (-.-J. o ‘. " e SR RENE



‘ PP l'_'-
(7]
[
(=]

v.
N iY_ ¢l .
o (3.10) log Ee ©  =¢tf (¥ _1_iag(x))u(dadx)
o iz,7)
] log Ee = -%tQ(¢,4)
f,' for some o-finite measure p on Rx X such that the positive-definite bilinecar
‘i forms Q and
2
o (4,9 = | a“6(x)¥(x)n(dadx)
~°
o satisfy the bounds
. 2
(3.11) Q(4,) < olloll 7
e u 2
Q(4,4) < ollolly
‘I; for some numbers 6 ¢ R, and re R, Extend Q and Qu to Hr by continuity.
Then there are unique continuous linear maps Y and Z from Lz( 1R+: Hr) to
the square-integrable random variables such that
; (3.12) th¢] = Y[l(o,t]¢] »
: Z,M¢1 = 201 101 .
:: These maps have log characteristic functionals
: . iaF_(x) .
(3.13) ¥ (F) =logBe T F) = fle 5 1. iaF (x))u(dadx)ds
.
x iZlF]
Y
B ¥,(F) = logE e = Q(F,F)ds
which satisfy the inequality
i (3.14) l¥(r) -6y s 3% (Il + el ) e - Glll.
»
{o 1
b for F,Ge LZ(R+: H_). Here ”lFI"r denotes the norm ([ I|Fs||12_ds)/i of an clement
2
. Fel (R+.Hr).
-
;; Proof:
2 ,
34 For functions Fe L“(R, : H) of the form F_(x) = } f.(s)¢j(x) with cach f,
- isd )
* a step function with compact support, (3.13) follows immediately from (3.10).
>
- By taking derivatives in (3.13) one sees
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3.11

EY'F] = EZ[F] = 0 ,

E(FIY) = [o QUF,F)as < of||F(IZ
+

E(2(F1%) = g Q(F,.F)ds < olflffl2 .
+

Since step functions F of the form indicated are dense in LZCR*: H rL the
proof will be complete (by continuity) once we verify (3.14) for step functions.

First we consider Y. If x and y are any two real numbers then

I(elx ~1-ix)-(eY-1- iy)| Uif(t) i2eis dsdt |

A

y
|/l ]at]

(x| +lyDlx-y];

IA

hence

1%y (F) - ¥4 (6| s 5fa’ ([F| + |G]) [F - 6|duds
s 5(fa(|F| + |G6]) 2duds) *([a?|F - G| %auas)™*
s 30|l IF| +[c] Il ItF-alll,

< 30 ClIFlll + Hslll o NlF -6l
For Z we use the parallelogram law:

¥, (F) -¥,(®) | = uf|Q(F,,F)) -Q(6,,6)) |ds

= 4f|Q(F  +G_, F_-G)|ds

< a,(;Q(ps +Gg, F + Gs)ds)”(]Q(ps -G, F - ns)ds)"’
s wollir+GlIl Nl -Glll

< BoCHItelll, « llelIl p e -alil . 0

Remark 3.1

For each e ¢' and t >0 the random variable Mtrw] appearing in the proof of

Theorem 2.1 (resp., 2.3) is of the form Y(F] (resp., Z[F]) with
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3.12

-(t-s)A,
: _ j . . 2 .
Fs(x)-ijf¢j]1[0,T](s)e ¢j (x). It is easy to verify that Fe L. (R‘.lir)

if pe Hr’ since

-2(t-s)A,
NEIE = Jro, ealyvie 159 12 as

A

2 2r
Wle, .
tZJw ¢]] Q1 +AJ)

eliwl2 .

Remark 3.2
For each Y€ ¢ and t >0 the number mtrw] appearing in the proofs of Thcorems
2.1 and 2.3 satisfies the inequality

—(t-s))\j
|2jwl’¢j ]m[¢j]fr0,t]e ds |

Ith]‘

: 1frg e

Mt ol

A

2(lmll__IIIFN_ -

1]

For each ne N let X" be an independent increment ¢'-valued process with
log characteristic functional
I ¢}
iX, el .
log Be © = itm™ o] + ¢f(e 2 1 _iag(x))u"(dadx)

for some m' e &' and o-finite measure un on Rx X for which the bilincar functional

2
Q"(¢,¥) = [ a“e(x)¥(x)u" (dadx)
is continuous on ®x&. Let W' be an independent-increment ¢'-valued process
with log characteristic functional

iwt[¢]
log Ee = itml¢] - %tQ(¢,d)

for some me ' and continuous positive bilinear form Q.

Let {53} and ¢, all be random elements of ' satisfying the bounds
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v
3.13

l

» (3.16) ENECNZ <6

v e 0 Ty 3

2

.

Z" for some fixed Ty€ R and 635 R+ (independent of n), and such that each Eg is
. independent of {X:} and £, is independent of {Wt}. Let £" and  be the &'-
» valued processes given by

T

n _ o,n \ n
L (3.17) Et Ttgo * J’(O,t]Tt-s dxs
= T! '

: g, = TiLy + f(o’t]Tt_s dW_

4

:} in Theorems 2.1 and 2.3, respectively. We now prove the main result of this
) section.

Theorem 3.2

3 In addition to (3.16) assume that {u"}, {m"}, and {Eg} satisfy the following

: conditions:

3 iz, 9] 1E77 6]

r, M: i) Ee = 1lim Ee

2 e

¢ . . n

A ii) ml] = limm (]

Py N

Al

’ iii) Q9,9 = lim Q"(¢,9)
> n->e

- iv) 0 = 1inm [ a%* 0" (dadn)

- n>o

z 2 2

% v) [m're1]%+Q"(6,0) s 8,llll2
- 2

. for cvery ¢ and § in o, where 62 is independent of n. Then for every q 2
A max(rlf T,y -r3) the measures P = Po(En) -1 induced on D = D(]R+: H_q) by E"
converge weakly to P = PP (L) -1

¥

ot

Ca

2

s

L
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Proof:

From ii) and iii) it follows that m and Q satisfy v) too, i.e. that
2 2
lmre1]° + Qeo,4) < 6,l10ll7
2
for all ¢ &. By Lebesgue's dominated convergence theorem it follows that
ny2 n 2 -2
3.18 - =Y. (ml¢p.1-m e, D (1+2r,) "4
(3.18) lm- n®lIZ, = 3(are;3-n o, n7(1 + 1))
+0 as n+*® ,
n 2 _ _al 2 -2q -2q
(3.19) Q- Q17  .q = L;j;(QC0;,05) - Q7(0;,0) (142" 42 )
+0 as n+>® ,

2.} . . .
The norm HS]Ir°s = (Xij S(d)i,(bj)zllzbi||f_||<bjIIS)'ﬁ appearing in (3.19) is the tensor

product norm Il-”r e | '”s of the bilinear form S, when S isregarded as an clement

of (%ed)' = SYp HeH (see [19], Def. 43.3 and the discussion following).

and satisfies [S(¢,0)| < [Isll gglloll llvll .

Thus the hypotheses of Theorem 3.1 are satisfied, so {P"} is tight. To provc
that P" converges weakly to P it suffices to show that the finite-dimensional
distributions of P" converge to those of P, for then {P"} could have no cluster
point other than P and so must converge.

Fix any Ke N, {tl,..., tK}C R, , and {wl,..., wK}Cd>. It remains only to

show that
. . n
1zkctk[wk] 1zkgtkrwk1
(3.20) Ee = 1im Ee
N>

Fix any T 2 max{tk} and define Fe LZ(R+: Hq) by

-(tk-s)k.

=Y J .
F(x) = )-k;jwkrd’j]l[o,tk](s)e 6500

note that

2 2r!t
LA RO CIRL MY Rb It N 7N N

....... - .
- 3 RN .
........ S A

S PRV VYR VL P YR




1
s
for any re R and F_=0 for s ¢ (0,T], so Fjec® and IHFIHr <T Zk”“’k”r'
As in the proofs of Theorems 2.1 and 2.3 we decompose L and En into the
three series

-(t-s)A -(t-s)X

-t . .
- j : j j
L, = (;jr,orq;j]e 950 + jSro,t 1 dZsf¢j ]¢j) + (zjmwj]jro,t 1 ds¢j).

-(t-s)x -(t-s)X.

gy n j
dvsr¢j ]¢j) + Qjm r¢j]]r0’t]e ds¢j),

™
1

~tA,

B n J
t - ()'J€Or¢j le ¢j) + (ijro’t]e
each series converging uniformly (for t<T) in the H_q topology. Thus

-t, A
VY k™)
chtkrwk] = zkzjwkr¢j]cor¢j3e

-(t

-s)A
+ zkzjwk[¢j]fro,tk]e

k 5dzsr¢j1

-(tk-s))\j

+

zkzjwkr¢jjmr¢j]I[0,tk]e ds

LolFol + Z[F] + I[O’T]mFFS]ds
and similarly

m'TF_1ds ,
S

n _ N n
sttkrwk1 = £)TF] + Y'IF] + I(O,T]

where Z and Y" are the continuous linear maps from Lz(]{’:Hq) into the square-
integrable random variables given in Proposition 3.1.

By independence we have

%z, (]
ke, Y
(3.21) Y=1ogEe = ¥y (F) + ¥y(P) * ¥y (P
with 1L [F,]
¥, (Fg) = logBe ,
¥,(F) = logEe'Z/F]

“if1 g 17UFg,FQ)ds




..............................

3.16
ifmlF_lds
¥ (F) = logEe s
m
= ifrO,T]m.st]ds .
Similarly, n
iL £F [y, ]
n tk
(3.22) ¥ = logEe =Y (F) +¥ (F) +¥ (B
g Y m
with
1EOTF ]
Y (FO) = log Ee ,
E0
iaF (X) n
¥y (F) = f(e ° -1-iaF_(x))u"(dadx)ds
Yn S
-3 n
\ymn(p) = 1]r0’,r]m [F 1ds .

Fix €>0 and choose Je¢ IN1large enough that the orthogonal projection Il of Hq

onto the span of {¢1,..., ¢J} satisfies

Ll - mu i < esaaze,r el ) s

by the triangle inequality and Remark 3.1 we have

(3.23) Ifcx-melll, < Byt Sl my

< /28, |l

By i), iv), (3.18) and (3.19), we can find Ne N large enough that for cach n>N

iz Fy] 1E07F ]
(3.24a) | llog]Ee L logE e 00 | <e/3 ,
(3.24) In- Pl < e/sTelEN,
n 2
(3.24c) - @Ml _ggq < €/22llIFHG
(3.24d) ) Ja'ecoudadn) < 274t lIFIlGC Y 1 Twlo, 1H7n?
je3- J Q547

e e L R A, BN B SOrI ACh s e ) A AL 4 e e Jne el i o8 A A S ol A it . ariCil el A I AT A B S SN AP o
T s o, o N S T T, v W S TE TSR eT T s A . i R Lt T e T R S




j<J k=K

and

Gi(X)

7N

50 ja4G:(x)u“(dadx)ds <

N\

Thus

1]

¥, (@) - vyn(c)l

A

A

N

1A

A

By Proposition 3.1 and

A

(3.25) |¥,(F) - an(F)l

A

A

Introduce the temporary notation G=IF, i.e.

G (x) = ) b [95e

PP

3.17

-(t, -s)A,

k
! Irg,¢, 1($)4;(x). Then lelly = MFll,.

10,1908 (L33l T 705 D
Y33 4
3.3 v .4 4 n
T(Zj(zklwkt¢jll) *) jEJIa ¢; (0 W (dadx)

52/4621HF|H§ by (3.24d).

]f(eiaG-1—iaG+%a262)dunds-%]aszdunds+%fQ(Gs,Gs)ds|
iaG , . 2.2, n, n

[le'®>-1-iaG+a“G” | du"ds+4[|Q (GS,Gs)-Q(GS,GS)Ids

1 3. n n 2

11 )ac) San"as « [l - all_gq_q IIG, 113 45

1 22.n, . %44 n, % n 2
e(fa®c“au"ds) *(fa" 6" du"ds) * + [[0" - Qll_qc_q HIG|Hq

1 2.%, .2 2.% 2 2
1o, 6l D 740, N D™ « cerazllF NI Nall
€/12 + /12

e/6 .

(3.23),

¥, (F) - ¥,(G) | + [¥,(6) -WYn(G)I +|‘l’Y

%eZ(IHFIHq-+lnclnq)lnF-GIHq-+e/6-+an(IHFlHq+IHGIHqJIHF—GHg \

n(G)-—WYn(F)l

6 + 26, ([|F !
e/6 + 26, [lIF|ll I - Trfll

e/6 + £/6

e/3.




5 | :
= 3.18 y
. {
e ]
-_._' d
e By (3.21), (3.22) and (3.24b) we have
d
1 - r - n
‘. (3.26) lv_(F) zn(F)l < fImfE 3 -m'TE 7|ds %
T n )
o < m-m F ds 1
i fllm=nll_g lEl o
D) ny .5 2. .5 {
< flm- ol TSN R _[12as) ‘
s’'q ]
.‘.'- ?‘
AN = |lm-m T F .
- lm - a1 T2lEN,
. < €e/3 . 1
S .
R Finally by (3.21), (3.22), (3.24a), (3.25) and (3.26), d
AN 2
o _yn ) _ : ;
[V-¥7] < v, (F) =¥ (F) |+ [¥,(F) =¥ (F)[+|¥ (F)-¥ (P
— 0 £ Y m
LY - 0 b
.:-:': 4
e <e/3 +¢€/3+¢€/3 ]
\:.:- - 1
.:-’:.' =€ . H
This completes the verification of (3.20) and the proof of Theorem 3.2. 1 . .
OO Remark 3.3 1
-"P-" - .
_J‘,‘p .
O Condition A4 iv) can be replaced by i
= A4 iv)! 1im [12]12*%)6 00 12"  (dadx) = o ]
X o 3
o for some §>0. Since in most applications the incident impulses arc uniformly 3
';'g_',
g bounded by a constant A<e and A4(iv)' and A4(iv) are equivalent in this casc, ;
_:.:_\‘J R
:-',-j-f we omit the necessary changes in the proof of Theorem 3.1. N
':':: R
L y
x ‘-1-
:j:'_:j: .
-“ [ ~
.\.‘:—.' ~
o ;
v y




4.1

4. Examples and Applications

In applications, the set X represents a neuron or some part of a neuron
(such as the cell wall, soma or dendritic tree) or an assemblage of neurons
and muscles such as the heart. In this section we discuss several possible
mathematical models for X, the associated measure I' and the self-adjoint con-
traction semigroup 'I‘t on LZ(X,F) which models the decay of voltage potentials
on X in the absence of arriving excitatory and inhibitory impulses. We will
also consider classes of impulse arrival-rate measures {u"} for which we
can verify the hypotheses of Theorems 2.1, 3.1 and 3.2 and so construct solu-

. n .
tions £ to the equation

n=_,n n
dEt L Et dt + dxt

. . n .
(sce Section 2) and verify that £ converges weakly to a Gaussian process §.
First we consider in greater detail the three examples introduced in

Scction 2. It is convenient to state and prove the following useful lemma.

Lemma 4.1 Let Tt be a semigroup on H = LZ(X,F) satisfying Al and also

(4.1) c, = sup sup [0, (x)] (1+1.) T <
x 5 j

for some r < ©», Then any o-finite measure U onIRxX satisfying
2
(4.2) c, = f a"u(dadx) < o«
RxX

also satisfies assumption A2.
Proof: From (4.1) and (4.2) it follows that

Q6.¥) = fa2(x)¥(x) (dadx)

satisfies

|Qeo;, 80 | = Jae 1A )T ¢ (143) Th(dadn)
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R 3 AT

':* “ 4

» g

- cfc2(1+xj)r(1+xk)r, and hence
for finite sumg o =173 o[¢.19.,
jsg A
las.9) | = |jE o16;1018,] Q65,0 |
s ciczlg o0,) (1)
2(r+r1) -2r1

IA

2 2
c1c,( § 016,17 (1+1) )(§ )9

2 2
clczell‘q)nﬁr1 '

By Fatou's lemma the same bound holds for all ¢ € ¢, so Q is continuous. (|

Example 1. X consists of a single point.

Without loss of generality we may take '(X) = 1 and identify each ¢ ¢ @
with its value ¢(X) € IR, in other words, we identify ¢ with R. Any contraction
semigroup 'I‘t is of the form Tt¢ = e_tL ¢ for some L €eR_, and each HS is one-
dimensional with [[¢]| = [¢(X)| (1+L)°. Each measure p onIRxX is determincd
uniquely by its marginal ul(A) =‘&xmedadx) on the Borel sets in R, and sat-
isfies A2 if and only if ARazul(da) < o, For measures of the form(2.8)(with
p <« and q S ©), we have ‘

(4.3) b (A) = % fZlA(aZ) . % ff 1A(-a§)

k=1 2=1
2
i

where ft = vt(X) and £, = vf(X), and A2 becomes

4 k.2 L 8.2
(4.4) g fg(ae) . % @)% <=

This is trivially satisfied when p and q are both finite.

@]
PAP IR P—iq LI L




4.3

A sequence p of measures on IRxX satisfies conditions (iii)-(iv) of A4

if and only if, for some number 02 2 0, the marginals u?(') = un('xX) satisfy
(4.5) fa*\ (da) » o
fat) (aa) 0
as n > «=; for un of form (2.8) a sufficient requirement is
(4.6) 2 fk n k n . zzf: n( L, n)2 - 02

max{a

k,n, a%,n} >0
K, 1

. n .
as n >« In either case, for any sequence {m } ¢ IR there is a sequence of

unique (in distribution) generalized Poisson processes X: = tm + fa. x
IRx(0,t]
(Nn(dads)-u?(da)ds) as in (2.4), satisfying (2.5) and, for each sequence EO

PR A SRR

o

of square-integrable random variables, a unique (by Theorem 2.2) solution E?

to the stochastic initial value problem

n

n
dEy = -LE dt + dx:

n n

& = & -

If “n is of the form (2.8) then x? may be represented as

M oen ok on
(4.7 XF=te@™a + § PNy - T D
t k=1 © e gep i 1

(t)

B k,n .2,n X
where Ne’ , Ni’ (k,2=1,2,...) are independent Poisson processes with variance

fl n

k,n
parameters fe’ and and

-n _ ,n k,n £,n_%,n
(4.8) m = E f: a’ - g f.1 a;

assuming the latter sum converges; for this it is sufficient that each




4.4

summation extend over finitely many terms.

If the sequence {m"} converges to a finite limit m and if {58} converges
in distribution, then Theorem 3.2 asserts that the sequence of ¢'-valued pro-
cesses {5?} converges weakly to an Ornstein-Uhlenback process 7, with diffusion

2 . .
rate 0~ (given by (4.6)), relaxation rate L and an additional drift coeffi-
cient m.

In particular, assuming P 4, to be finite and taking mo= o we obtain,

in a slightly more general form, the main result of [14].

Example 2, This example includes the cases treated by Wan and Tuckwell and
by Walsh [21, 20]. Let X be the interval [0,b]. If X represents the membranc
of a neuron, it is natural to consider the contraction semigroup {Tt} whose

generator -L satisfies

Lp = -8B + SA¢

for smooth ¢ with compact support in (0,b); 620 represents the rate of ion
diffusion within the neuron, B20 the rate at which ions leak across the membranc.
In the cable equationapproximation to the electrical properties of neuronal
membranes (see [ 7 ], for example), § = (CM(R0+RI))—1 cmz/scc and

B = (CMRM)-1 sec”! where R, and R are the external and internal longitudinal
resistances (in ohm/cm), RM the membrane resistance per unit length (in ohm-cm)
and CM the membrane capacitance per unit length (in F/cm). If we select le-
besgue measure for ' and impose Neumann boundary conditions at 0 and b (i.c.,
seal and insulate the ends) then L and {Tt}are each uniquely determined and

self-adjoint on H = LZ(X,F). L has eigenfunctions {¢j} with associated eipen-

values {Aj} given by

A a-ax a
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©
[
~
]
Nt
]

Cj cos(mjix/b) j=0,1,2...

>
L]

B + 8(mj/b)°.

%

If we set C, = b “ and Cj = Z!Qb';i for j 2 1 then {¢j} is a complete orthonormal

set in H. Assumption Al is satisfied for any r > %; for example, r1=1 yields

1

0, = Tu )™ = 5b ((8+1)8) 7 coth(v(8e1) 7% « 3(8e1),
j | |

By Lemma 4.1 (with r=0), A2 is satisfied by any measure p on Rx{0,b] satisfying
(4.2); for sufficiently smooth m, we may take r, =T, in (2.3). With the choice
of X, H and Tt as above consider the Wan-Tuckwell model which assumes white

noisc current injection at a single point Xg € {0,b], { 21]. The impulse

arrival-rate measures un are taken to be of the form
n _ E k,n k,n g ,n 2,0,
@9 s = (0" 1,60 +£=1f§ 1,(-a5" M) 1g(xg)

(4.9) is a special case of (2.8). Here and throughout this example we will

assume p, q < «» and independent of n. We have

"@.¥) = d(xph¥(xy) o
where ¢ and Y ¢ ¢ and
@.10) - E ghon ko2 | g ghom (g bomy 2
. noo,oye e =1 i 8 *

Under the assumption

(4.11a) lim orzn = 02 (0502<oo),

nro

and

(4.11b)  1im max{a®’®, a*'M}
meo kL °

]
o
-

i

i

N AP




.‘_.f_
.:‘::;'
B the assumptions (A4) (iii)-(v) are easily seen to be satisfied with
o 2
AL (4.12) - Q.Y = d(xp)b(xy) oo,

.'\
g
‘:ji The white noise processes x? then have the representation

b}
‘.*'.- k n

% (4.13) x @) = tim"(¢) - W (9] +§ MUN};’"(C’S:(‘X)

;‘-‘.. ) k"l Xx (0 t]
- ai’" [ e N"ds,ax),
v 2=1 X< (0,t] 1
.': k,n ¢,n . . . .
o where Ne , Ni are independent Poisson measures with variance measures
\':-.
1ﬁ2 respectively given by f:’n-v(dx) and f?’n v(dx) with v(B) = lB(xO). In
':?" (4.13) m" is given by
o

o (4.14) 't (9) = v 6(x,)

B

with .

& E fk n k n ? ,n Z,n
ﬁ' n k=1 0=1 a

{.

. Consistent with the Wan-Tuckwell model, choose mn(-) = ﬁn(-) and assume that
o (4.15) limy =Yy, Y< exists.
',:.:: e

N
'ﬁg- Furthermore, assume Eg to satisfy A4 (i). Under the assumptions (4.9)-(4.11)

:‘ and (4.15) it follows from Theorem 3.2 that the processes E? satisfying
oo n n n
.;;: dﬁt = -L'Et dt + dxt, {t>0)

A

= with 58 as above, converge weakly to the ¢'-valued Gaussian process f  given
- by

;;;: = j .
% (4.16) g, = 1 652,

o

U M)
a
“

‘: ‘l
DV,

P |
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o
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-
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O
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4.7

The real-valued process Cf satisfy the stochastic differential equation
b2 I j
(4.17) doy = [-A 0y + Y6, (xp)1de + c|¢j(x0)ldwt

with initial value cg. Each wj is a standard, real-valued Wiener process.
Equation (4.17) is equation (25 ) obtained by Wan and Tuckwell in [21 }J. We
note, however, that in [21 ] p and q are both taken to be equal to . As a
conscquence of Theorem 2.3 it also follows that the series in (4.16) converges
uniformly in 0 < t < T in the H_qtopology where q > max(%,-rs).

In their paper Wan and Tuckwell briefly comment on an extension of their
model in which the impulses can arrive at different points of X, i.e., instead
of all the impulses arriving at a single point Xy there are distinct points
xt (k=1,...,p) at which excitatory impulses arrive and distinct points x%
(2=1,...,q) which receive only inhibitory impulses. The authors state that
the locations of the excitatory and inhibitory synapses "do not differ by
very much'.

In place of (4.9) we now must take
n =§ k,n, o k,no ok g 2,0 . o f,n. L
(4.9)°' U (AxB) k=1fe lA(ae )lB(xe) +2=1fi lA( a; )IB(xi)'

Then

2

N R R R Tt Tl

kx k’
Q" (¢, ¥) =k§1fe "(ag"™ 9y

and the corresponding ﬁ"(¢) is of the form

F% | (4.18) W@ -k§ fo™ ag™" 00xg) zilfg’" ag™ 0.

As before, we will take m" = m" in the choice of the noise process Xn. The

" assumption

........
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Q"(¢,¥) > Q($,¥) for all ¢,y in ¢

leads to the existence of the finite limits (assumed positive)

(4.19)  of = 1im £97@EOM2 F 11m f’.L 2 n2
(-] e e 1

n-roo

for k=1,...,p

and 2=1,...,q. We then have

k k k L L L
Qe,¥) =kgl ag O(xV(x;) +zgl ol SO,

This assumption and the additional condition (4.11b) verifies (A4) (iii)-(v).
(A4) (i) takes the form
(4.20) lim m"(¢) = m(¢), finite for every ¢ ¢ 0.

n—m

However, conditions (4.19), (4.11b) and (4.20) are incompatible unless

(4.21) P=q and xz = xz (k=1,...,p).

(4.21) can be easily shown by using the fact that c” functions with compact
support belong to ¢. Choose such a function ¢ with ¢(x§] =1, ¢(x2) = ¢(x%)=()
for all & = 1,...,q and m#k, where xz is a point not belonging to the set

{xi, 2=1,...,q}. Then (4.20) implies fk n : " 5 a finite limit as n » =
which is impossible in view of (4.19) and (4.11b). Thus all the points xt
belong to the set {xi, 2=1,...,q}. Similarly, all the xi belong to the sct

{x:, k=1,...,p} and thus the two sets are the same. Renumbering the points

{x%} if necessary, we have (4.21). Writing xg = x: = X (k=1,...,p) we have
i

_ k, k& 2
Qs,9) = kglcae o) ¢°(x)

and

R0 = 3 Y% a0
k=1
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4.9

for all ¢ ¢ ¢ where Yk = lim[fk’n ak’n - f*’n ak’n
o © e i i

just given holds for any X and ¢ which contains functions that distinguish

]. Note that the argument

points of X. The stochastic differential equation for the processes CJ corre-

sponding to (4.17) now takes the form
b d .o j
(4.22) dey = [-Mgp + m(9;)]de + QUS;.6,) dwy

with initial value cg and wj a standard Wiener process. The ¢'-valued process ¢
is given by (4.16) with Cj satisfying (4.22). The processes En satisfy an equat-
tion very similar to that obtained in the simpler Wan-Tuckwell model with white
noise current injection at a single point. Equation (4.22) differs from (4.17)

only in the constants Et¢j) and JQ(¢j,¢j) .

Thus if &, is a solution to the initial value problem

dg

t -L'&tdt + dXt

%= %

in which X  is a generalized Poisson process with only very small jumps, then

£, is close in distribution to the solution f  to the initial value problem

dg -L'ctdt + dW,

t

If W is a Gaussian &'-valued process with the same mean and covariance as X,

and if %o is a Gaussian ®'-valued random variable whose distribution is close

to that of &0_ This supports the use of Gaussian methods to study the approx-
imate distribution of the process £ , including first-passage times and re-

lated functionals (e.g. in [21] and [i8]).

v
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K In [20 ] Walsh considers a model in which X, I' and {Tt} are the same as —
{ !A
N in the Wan-Tuckwell example discussed above but the choice of p is morc gen- -]
\, eral, i.e., u is determined by a finite measure v on X and a Markov kernel ‘fj]
X %
" K via the relation
'J"
- u(AxB) = [ K(x,A) v(dx), AcR, Bc X
o B
- The kernel K(x,da) is the regular conditional probability distribution of the
- size a € R of impulses arriving at the site x € X, while the measurc v(B)
% is the overall arrival rate u@RxB) of impulses of all sizes at points xe B c X.
b The requirement made in [20 ] that f[fazl((x,da) + (Ja K(x,da))z] v(dx) < w
:jv entails that 4,2 is satisfied so that A2 holds and Theorems 2.1 and 2.2 apply.
\‘.:
,::: Incidentally, Walsh represents Tt through its integral kernel G(x,y;t) =
o -th,

Xj e J ¢j (x) ¢j (y). The series converges uniformly in x and y by Al. Walsh
‘- defines a two-parameter stochastic process V(t,x) which is an integral kernel
= for our £ :
_.*

£.[6] = [ ¢(x) V(t,x) T(dx)
e
.
o
o and our notation is related to his as follows:
&
Epl0] = [ 6(x) v (x)T(dxy,

3 0 0
48 X
1Y
.Y
< £.[0] = )i( ¢(y) V(t,y)T(dy)
3 = [ 6(y) [ vy(x) G(x,y;t)T(dx)T(dy)
X X X
al t
N + [ o) [f [ G(x,y;t-s) F(dsdx)]T(dy)
» X X0
X = [If 6(x,y;t)e(y)dy] vy ()T (dx)
-3 X
> p
2 + [ [1f 6(x,y;t-s)6(y)T(dy)] F(dsdx)
Y 0 X .




' 4.11

-

[T,0(x)] v, (0T (dx)

A
+

f
X

£y .
[ ] [T, 0(x)] aN(dadxds)
0 RxX

s
]

- It is shbwn in Theorem 3.3 of [20 ] that, under certain conditions

-ht (3.1 of [20]), almost all of the finite-dimensional distributions of a

;z sgquence of such processes vt converge to those of a Gaussian process Ve which

«? is an integral kernel for our Cer Walsh's condition (3.1a) implies our A4 (iii)

‘Q?. while his (3.1b) is equivalent to our A4 (iv)'. It should be noted, though,

3& - that our approach to the problem is different from Walsh's. Our results are

" not concerned with the convergence in distribution of Vn(t,x) for fixed t

5;; and x. On the other hand, Theorem 3.2 of our paper stengthens Theorem 3.3

;ﬁ of [20] by proving the convergence in distribution of the ¢'-valued processes

?% &? in the sense that the probability measures in D(]1+:¢') induced by the E?'s

Si converge weakly to that induced by ¢, . The advantage of establishing weak

;zé convergence of the &'-valued processes is that it yields convergence in distri-

i bution of continuous functionals of the paths, such as the first passage times,

@i 1(¢) = inf{t>0: Et(¢)>9}, = o if {,,.} is the null event, (¢ ¢ ¢ or Hq).

’S As already noted earlier, our approach to modelling the biological phen-

.A: omena of interest as ¢'-valued processes is very general as is clear from the

:ii assumptions made in Theorem 3.1 on X, I' and the semigroup {Tt}’ and as will

isg be further illustrated in the next example and Section 5. In these examples,

é? ’ X will be a spherec in.R3 or a smooth, compact manifold with or without boundary.

gi Such problems lie outside the scope of multi-parameter martingale theory. Even
3
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A d "
i when X ¢ R~ (d21), the semigroup {Tt} cannot, in general, be represcnted by -]
«* —
(- a kernel given by a uniformly convergent series, the case treated by Walsh. .ﬂ
. E
3;; When the series makes sense as a distribution, one is naturally led to a Ny
'u'. ‘-;l
}ﬁj generalized stochastic process of the kind we have considered in this paper. 3
o't

Example 3. X consists of a sphere.
Let X = Sz, the unit sphere in.RS, with Lebesgue surface measure I'. If

AB denotes the spherical Laplace-Beltrami operator

b = (sin )7 [ (sin 0) 2 + L (sin 0)7* 2

2 . .
: (where 6,n are the Euler angles on S7), then L = -8 + SAB is self-adjoint

Bl
;; on H = LZ(X,F) for any real numbers B, 6. If B and § are positive then -L
l;j generates a contraction semigroup {Tt} as before. This time the eigenfunctions
‘l:{
¥ are the spherical harmonics Yzm (2=0,1,...; m=-2,...,2) with eigenvalues
N A = B+62(2+1) for L, e ™ for T,; we set
o . . Y o2
N ¢j = Ylm jem+L (R+1) (i.e. &=[[j °]), m=j-27-2)
2 A= B [ (L3 FDe )
»
e Assumption Al is satisfied for any r, > Y5, since
' . -2r1 2 -2r1
6. = Y.(1+)) = ], (2041) (24+B+8(R7+1))
o 1 j j £
- -ar, -2
’:i < 48 +6 /(x,-%)
o < =
‘ﬁ; The spherical harmonics obey the bound
x 2
o sup IYzm(x)l = (20+1)/4m
o X
13
Lo
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so {¢j} satisfies

sup sup 9, ()| (1) = (an’min(s,48))
j X

< @,

By Lemma 4.1, any U on RxX satisfying (4.2) also satisfies A2, For further

details the reader may consult [5 ].
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S. Applications Where X is a Compact Riemannian Manifold

PP Y W)

Often the set X is intended to be the cell wall or surface membrane of a
neuron; as such it ought to admit a mathematical representation as a compact
Riemannian manifold of two dimensions. In voltage-clamp experiments the ccll
wall is cut and the membrane potential voltage at the cut is held at some nre-
scribed value by the experimental apparatus; in this case X may be regarded as
a manifold with boundary.

The following theorem gives conditions on a manifold-with-boundary X, a
measure I on X, and a semigroup'{Tt} on LZ(X,F) which guarantee that assump-
tions Al) and A2) will be satisfied for any measure p satisfying (4.2), i.e.
for any noise process Xt admitting mean and covariance measures. Sce Hormander

("111, ch. X) for details about elliptic boundary systems on manifolds.

Let X be a smooth d-dimensional compact Riemannian manifold with smooth .
(possibly empty) boundary 93X and Riemannian volume element dI'. let L be a
positive self-adjoint operator on a domain DCI{=I?(X,F) satisfying
i) C(XeD
ii) The restriction L0 of L to C:(X) is a uniformly strongly elliptic
differential operator of order 2m> 0 with smooth coefficients. :
iii) D<:W2m(X), the Hilbert space of those elements in H with 2m wcak
derivatives in H.
Then L admits a complete orthonormal set {¢j} of eigenfunctions in H with
eigenvalues {kj} satisrying
i) L¢j=)\j¢j A
i) ¢, e c (X
2r

114) L1 +2)) Y<o for all r >d/an

iv) sup sup |¢j(x)|(1 +>\J.)""<oo for all r> d/4m.
i x
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Corollary 5.1

ﬁ‘. The contraction semigroup Tt gererated by -L satisfies Al. Any measure y Ej
’i:j on R xX satisfying (4.2) must also satisfy A2. o
Et‘ _ Proof of Theorem 5.1

) In case X is an open set in RQ, Theorem 14.6 of Agmon M1l gives i) and (

-~ .

iii); ii) follows from elliptic regularity (e.g. 1] Theorem 9.3) and iv) from

B

the Sobolev imbedding theorem (e.g. 1] Theorem 3.9). Completeness of {¢j}

i - follows from 721, Theorem 3.4. "
‘:i: The case of a general Riemannian manifold can be treated by extending

j: Agmon's proof to manifolds (using the Schauder estimates of T371) or by employing E
v

4 a partition-of-unity argument as in Hormander (11] Chapter X). .
'fz : Remark 5.1

Frequently in applications L0 is given as part of an elliptic boundary sys- g
tem L='{L0; 21,..., Zm} (see 7111, p. 254) in which Zl,..., lm are smooth dif-

ferential operators of order < 2m on c”(aX). Theorem 5.1 will apply if it can

-;f be shown that LO is essentially self-adjoint on the domain Do= {¢e Cm(X): b

;L‘ has a continuous extension ¢ to X=XudX, the restriction of ¢ to 3X is ¢, and 1
:i% (j$§§0 on 3X for 1<j<m}.

.;ié The second-order elliptic operators with Dirichlet or Neumann boundary

conditions can be treated in this way.

ixamples 1, 2 and 3 of Section 4 are special cases of this, with d=0, .

;f, d=1, and d =2 respectively. A more realistic example would appear to be that

if: in which X is the boundary of a 3-dimensional solid, so 3X=@, and L=-Ag+

*fﬂ; | B(x) is the sum of the Laplace-Beltrami operator and a smooth positive function

7;&3 - representing the trans-membrane conductance on a (not necessarily spherical) 2- -
i} manifold X.
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Example 4.

Before simplifying to X=[0,b] Wan and Tuckwell discuss a one-dimensional

finitely branching tree as a model for X: J

P N T O W Wy

Although this is not quite a manifold (it is not locally homeomorphic to R at
the nodes) it nonetheless can be handled by our methods as follows.
Represent X as the disjoint union of N compact intervals fO,b]1,..., l“.hN!
and each function ¢ on X as a family ¢1,..., ¢N of functions on the intervals
satisfying certain boundary conditions. If Ji represents the (possibly empty)
set of indices for the segments emerging from the node at the end of the ith

segment, the appropriate boundary conditions are

1) ¢i(bi) =¢>j (0) for each je Ji‘ 1<isN ,

2) ¢!(b,)= ) ¢!(0) for each 1<isN ,
1 jed, J
1

3) ¢;(0) =0.

The first of these guarantees that ¢ will be continuous when regarded as a
function on the tree, while the second is an expression of Kirchhoff's Law

forbidding any leak of current at the nodes. The third equation imposes Neumann
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. 5.4 _
v el
4
" {or "insulating") boundary conditions at the base of the tree; it or any of

{ the N conditions in 2) could be replaced by a Dirichlet (or "grounded'") condi-

;i ‘ tion. It is easy to integrate by parts and show that A¢i==¢¥ is self-adjoint

: on the domain D of all C1 functions on X satisfying the boundary conditions
. above and possessing an absolutely continuous derivative and a square-integra-
y ble second derivative with respect to Lebesgue measure T.

;: Theorem 5.1 still doesn't quite apply since the boundary operators are
" non-local (on the disconnected set X), but its conclusion still holds true.

%f In fact, -A +B has a uniformly bounded complete orthonormal set of c” eigen-

{: vectors and hence one can take r =0 instead of just r21 in conclusion iv).
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6. Nonlinear Problems and Directions for Future Work

The stochastic behavior of the voltage potential investigafed in the previous
sectionf has the form of a differential equation

(6.1) dg, = ;L'Etdt + dxt

t
where L' : ' + &' is the adjoint of L. In our model L' is a linear operator and
hence {Té} appearing in  (3.17) is a linear evolution semigroup. This is
a decidedly unrealistic feature, for physically it amounts to the assumption that
the electrical properties of the membrane are unaffected by changes in the poten-
tial voltage'across the membrane. Our model fails to take into account experi-
mentally observed features of certain neurons, for instance the following:
(a) As the cell membrane is progressively depolarized, the postsynaptic poten-
tials (inhibitory as well as excitatory) eventually become reversed in sign.
The reversal potential would introduce one type of nonlinearity in the modcl (secc
(211
(b) At least in some cells (such as sympathetic ganglion cells, see [4],
p. 135) the sizes of the postsynaptic potential impulses are dependent on the
state of depolarization of the membrane potential.

It would thus seem that a model which better describes the physiological

process would let Et satisfy an equation such as
= at '
(6.2) dgt atdt + btdxt

in which a' is a $'-valued process adapted to'{Xt} (most likely a nonrandom,
nonlinear &'-valued function of Et) and bé is an adapted process taking values
in a space of functions from ¢' to ¢'.

We can replace X, by W_and £ by £ in (6.1) and (6.2) and seek to approxi-

e 2 g B T E

mate the behavior of the process Et by that of a nuclear space-valued diffusion

Ct satisfying

e o s ek 4

(6.3) dg, = aédt + bédwt ,
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ot 6.2

ce )
i}s, but the techniques used in the present paper do not suffice to prove the existence

(é and uniqueness of solutions to (6.2) and (6.3) or to prove the distributional con- )
ESEE vergence of a sequence of solutions to (6.2) to the corresponding solution of

ES%S {(6.3) when a' and b' are nonlinear.

Ahi. Even the use of a semigroup (linear or not)'{Tt} to model the evolution of

és? the membrane potential in the absence of incident impulses entails an implicit -
ézi assumption about the physical system which is unrealistic, namely that the state E
-;" of the system is .unambiguously specified by giving only the membrane potential ‘
;ié itself at every point of X. It is known [13] that the local membrane behavior :
ési depends critically on the concentration gradients of sodium, potassium, chloride, E
'7; and calcium ions, and that active transport of these ions as well as diffusion i
:ié play important roles. Recent experiments revealing the stochastic behavior of f
ii;: ion-specific gates through cell membranes offer new opportunities for more %
' . elaborate stochastic modelling of this important system.

-iij Finally, the stochastic differential equation model with which this paper E
':g deals and its extensions briefly indicated above have applications to other areas

-

ki of biology, e.g. to problems of emigration of biological populations. We hope to %
éig investigate such problems in future papers. E
-3 :
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